The Role of Nuclear Receptor NHR-64 in Fat Storage Regulation in Caenorhabditis elegans

نویسندگان

  • Bin Liang
  • Kim Ferguson
  • Lisa Kadyk
  • Jennifer L. Watts
چکیده

Nuclear hormone receptors (NHRs) play vital roles in the regulation of metabolism, reproduction, and development. We found that inactivation of a C. elegans HNF4 homologue nhr-64 by RNA interference (RNAi) suppresses low fat stores in stearoyl-CoA desaturase-deficient fat-6;fat-7 double mutants and sterol regulatory element binding protein (SREBP) sbp-1 mutants. Furthermore, inactivation of nhr-64 improves the growth rate of the fat-6;fat-7and sbp-1 strains. While nhr-64RNAi subtly affects fatty acid composition and fat storage in wild-type C. elegans, its effects on lipid metabolism are most apparent in the background of stearoyl-CoA desaturase or SREBP deficiency. NHR-64 displays transcriptional activating activity when expressed in yeast, and inactivation of nhr-64 affects the expression of at least 14 metabolic genes. Wild-type worms treated with nhr-64 RNAi display increased expression of acetyl-CoA carboxylase as well as increased abundance of de novo synthesized monomethyl branched chain fatty acids, suggesting an increase in fat synthesis. However, reduced expression of the acetyl-CoA synthetase gene acs-2 and an acyl-CoA oxidase gene indicates that a key role of NHR-64 may be to promote fatty acid oxidation in mitochondria and peroxisomes. These studies reveal that NHR-64 is an important regulator of fat storage in C. elegans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic Regulation of Unsaturated Fatty Acid Composition in C. elegans

Delta-9 desaturases, also known as stearoyl-CoA desaturases, are lipogenic enzymes responsible for the generation of vital components of membranes and energy storage molecules. We have identified a novel nuclear hormone receptor, NHR-80, that regulates delta-9 desaturase gene expression in Caenorhabditis elegans. Here we describe fatty acid compositions, lifespans, and gene expression studies o...

متن کامل

Nuclear hormone receptor CHR3 is a critical regulator of all four larval molts of the nematode Caenorhabditis elegans.

CHR3 (nhr-23, NF1F4), the homologue of Drosophila DHR3 and mammalian ROR/RZR/RevErbA nuclear hormone receptors, is important for proper epidermal development and molting in the nematode Caenorhabditis elegans. Disruption of CHR3 (nhr-23) function leads to developmental changes, including incomplete molting and a short, fat (dumpy) phenotype. Here, we studied the role of CHR3 during larval devel...

متن کامل

Nuclear Hormone Receptor NHR-49 Controls Fat Consumption and Fatty Acid Composition in C. elegans

Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by ...

متن کامل

The Caenorhabditis elegans HNF4α Homolog, NHR-31, Mediates Excretory Tube Growth and Function through Coordinate Regulation of the Vacuolar ATPase

Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian...

متن کامل

The conserved Mediator subunit MDT-15 is required for oxidative stress responses in Caenorhabditis elegans

Reactive oxygen species (ROS) play important signaling roles in metazoans, but also cause significant molecular damage. Animals tightly control ROS levels using sophisticated defense mechanisms, yet the transcriptional pathways that induce ROS defense remain incompletely understood. In the nematode Caenorhabditis elegans, the transcription factor SKN-1 is considered a master regulator for detox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010